Home
Search results “Vanstone handbook of applied cryptography”
Stream Ciphers (Contd...2)
 
47:08
Cryptography and Network Security by Prof. D. Mukhopadhyay, Department of Computer Science and Engineering, IIT Kharagpur. For more details on NPTEL visit http://nptel.iitm.ac.in
Views: 4288 nptelhrd
Public-key cryptography
 
44:57
Public-key cryptography, also known as asymmetric cryptography, is a class of cryptographic algorithms which require two separate keys, one of which is secret (or private) and one of which is public. Although different, the two parts of this key pair are mathematically linked. The public key is used to encrypt plaintext or to verify a digital signature; whereas the private key is used to decrypt ciphertext or to create a digital signature. The term "asymmetric" stems from the use of different keys to perform these opposite functions, each the inverse of the other -- as contrasted with conventional ("symmetric") cryptography which relies on the same key to perform both. Public-key algorithms are based on mathematical problems which currently admit no efficient solution that are inherent in certain integer factorization, discrete logarithm, and elliptic curve relationships. It is computationally easy for a user to generate their own public and private key-pair and to use them for encryption and decryption. The strength lies in the fact that it is "impossible" (computationally infeasible) for a properly generated private key to be determined from its corresponding public key. Thus the public key may be published without compromising security, whereas the private key must not be revealed to anyone not authorized to read messages or perform digital signatures. Public key algorithms, unlike symmetric key algorithms, do not require a secure initial exchange of one (or more) secret keys between the parties. This video is targeted to blind users. Attribution: Article text available under CC-BY-SA Creative Commons image source in video
Views: 765 Audiopedia
Diffie–Hellman key exchange
 
19:34
Diffie–Hellman key exchange (D–H) is a specific method of exchanging cryptographic keys. It is one of the earliest practical examples of key exchange implemented within the field of cryptography. The Diffie–Hellman key exchange method allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure communications channel. This key can then be used to encrypt subsequent communications using a symmetric key cipher. The scheme was first published by Whitfield Diffie and Martin Hellman in 1976, although it had been separately invented a few years earlier within GCHQ, the British signals intelligence agency, by James H. Ellis, Clifford Cocks and Malcolm J. Williamson but was kept classified. This video is targeted to blind users. Attribution: Article text available under CC-BY-SA Creative Commons image source in video
Views: 999 Audiopedia
RSA (cryptosystem)
 
30:46
RSA is one of the first practicable public-key cryptosystems and is widely used for secure data transmission. In such a cryptosystem, the encryption key is public and differs from the decryption key which is kept secret. In RSA, this asymmetry is based on the practical difficulty of factoring the product of two large prime numbers, the factoring problem. RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman, who first publicly described the algorithm in 1977. Clifford Cocks, an English mathematician, had developed an equivalent system in 1973, but it wasn't declassified until 1997. A user of RSA creates and then publishes a public key based on the two large prime numbers, along with an auxiliary value. The prime numbers must be kept secret. Anyone can use the public key to encrypt a message, but with currently published methods, if the public key is large enough, only someone with knowledge of the prime factors can feasibly decode the message. Breaking RSA encryption is known as the RSA problem. It is an open question whether it is as hard as the factoring problem. This video is targeted to blind users. Attribution: Article text available under CC-BY-SA Creative Commons image source in video
Views: 486 Audiopedia
ElGamal encryption
 
06:45
In cryptography, the ElGamal encryption system is an asymmetric key encryption algorithm for public-key cryptography which is based on the Diffie–Hellman key exchange. It was described by Taher Elgamal in 1985. ElGamal encryption is used in the free GNU Privacy Guard software, recent versions of PGP, and other cryptosystems. The Digital Signature Algorithm is a variant of the ElGamal signature scheme, which should not be confused with ElGamal encryption. ElGamal encryption can be defined over any cyclic group . Its security depends upon the difficulty of a certain problem in related to computing discrete logarithms (see below). This video is targeted to blind users. Attribution: Article text available under CC-BY-SA Creative Commons image source in video
Views: 13249 Audiopedia
Theoretical computer science
 
36:09
Theoretical computer science is a division or subset of general computer science and mathematics that focuses on more abstract or mathematical aspects of computing and includes the theory of computation. It is not easy to circumscribe the theory areas precisely and the ACM's ACM SIGACT describes its mission as the promotion of theoretical computer science and notes: This video is targeted to blind users. Attribution: Article text available under CC-BY-SA Creative Commons image source in video
Views: 68 Audiopedia