Search results “Unsupervised data mining is unethical”
Data Science Full Course | Learn Data Science in 3 Hours | Data Science for Beginners | Edureka
** Data Science Master Program: https://www.edureka.co/masters-program/data-scientist-certification ** This Edureka video on "Data Science Full Course" provides an end to end, detailed and comprehensive knowledge on Data Science. This Data Science video will start with basics of Statistics and Probability and then moves to Machine Learning and Finally ends the journey with Deep Learning and AI. For Data-sets and Codes discussed in this video, drop a comment. This Data Science tutorial will be covering the following topics: 1:23 Evolution of Data 2:14 What is Data Science? 3:02 Data Science Careers 3:36 Who is a Data Analyst 4:20 Who is a Data Scientist 5:14 Who is a Machine Learning Engineer 5:44 Data Scientist Salary Trends 6:37 Data Scientist Road Map 9:06 Data Analyst Skills 10:41 Data Scientist Skills 11:47 Machine Learning Engineer Skills 12:53 Data Science Peripherals 13:17 What is Data ? 15:23 Variables & Research 17:28 Population & Sampling 20:18 Measures of Center 20:29 Measures of Spread 21:28 Skewness 21:52 Confusion Matrix 22:56 Probability 25:12 What is Machine Learning? 25:45 Features of Machine Learning 26:22 How Machine Learning works? 27:11 Applications of Machine Learning 34:57 Machine Learning Market Trends 36:05 Machine Learning Life Cycle 39:01 Important Python Libraries 40:56 Types of Machine Learning 41:07 Supervised Learning 42:27 Unsupervised Learning 43:27 Reinforcement Learning 46:27 Supervised Learning Algorithms 48:01 Linear Regression 58:12 What is Logistic Regression? 1:01:22 What is Decision Tree? 1:11:10 What is Random Forest? 1:18:48 What is Naïve Bayes? 1:30:51 Unsupervised Learning Algorithms 1:31:55 What is Clustering? 1:34:02 Types of Clustering 1:35:00 What is K-Means Clustering? 1:47:31 Market Basket Analysis 1:48:35 Association Rule Mining 1:51:22 Apriori Algorithm 2:00:46 Reinforcement Learning Algorithms 2:03:22 Reward Maximization 2:06:35 Markov Decision Process 2:08:50 Q-Learning 2:18:19 Relationship Between AI and ML and DL 2:20:10 Limitations of Machine Learning 2:21:19 What is Deep Learning ? 2:22:04 Applications of Deep Learning 2:23:35 How Neuron Works? 2:24:17 Perceptron 2:25:12 Waits and Bias 2:25:36 Activation Functions 2:29:56 Perceptron Example 2:31:48 What is TensorFlow? 2:37:05 Perceptron Problems 2:38:15 Deep Neural Network 2:39:35 Training Network Weights 2:41:04 MNIST Data set 2:41:19 Creating a Neural Network 2:50:30 Data Science Course Masters Program Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS Machine Learning Podcast: https://castbox.fm/channel/id1832236 Instagram: https://www.instagram.com/edureka_learning Slideshare: https://www.slideshare.net/EdurekaIN/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka #edureka #DataScienceEdureka #whatisdatascience #Datasciencetutorial #Datasciencecourse #datascience - - - - - - - - - - - - - - About the Master's Program This program follows a set structure with 6 core courses and 8 electives spread across 26 weeks. It makes you an expert in key technologies related to Data Science. At the end of each core course, you will be working on a real-time project to gain hands on expertise. By the end of the program you will be ready for seasoned Data Science job roles. - - - - - - - - - - - - - - Topics Covered in the curriculum: Topics covered but not limited to will be : Machine Learning, K-Means Clustering, Decision Trees, Data Mining, Python Libraries, Statistics, Scala, Spark Streaming, RDDs, MLlib, Spark SQL, Random Forest, Naïve Bayes, Time Series, Text Mining, Web Scraping, PySpark, Python Scripting, Neural Networks, Keras, TFlearn, SoftMax, Autoencoder, Restricted Boltzmann Machine, LOD Expressions, Tableau Desktop, Tableau Public, Data Visualization, Integration with R, Probability, Bayesian Inference, Regression Modelling etc. - - - - - - - - - - - - - - For more information, Please write back to us at [email protected] or call us at: IND: 9606058406 / US: 18338555775 (toll free)
Views: 84004 edureka!
Implementation of Signal Detection Capabilities in the Sentinel System
On December 3, 2018, in cooperative agreement with the U.S. Food and Drug Administration (FDA), the Robert J. Margolis, MD, Center for Health Policy at Duke University will convene a public workshop to explore opportunities to implement signal detection capabilities in the Sentinel System. Authorized in 2007 by the Food and Drug Administration Amendments Act (FDAAA), the Sentinel System is an active and fully functioning postmarket safety surveillance system that can rapidly scale distributed analyses on data collected by a diverse range of Sentinel Data Partners to identify potential safety risks related to the use of prescription drugs. To continue advancing and modernizing this data infrastructure, the Agency is seeking broad stakeholder input on the landscape of methodological approaches for signal detection, as well as the opportunities and challenges to implement these approaches in Sentinel’s distributed data network. Discussion will also consider key governance and operational needs for implementing signal detection tools in a hypothesis free environment. Stakeholder input received at this workshop will further inform the Agency’s thinking around these priority issues and support strategic planning in the Sentinel System.
Views: 990 Duke Margolis
Zar Symposium 2017: Tom Schenk
Kathleen A. Zar Symposium, 2017: Open Science & the City of Big Data, Tom Schenk, City of Chicago
Views: 189 uchicagolibrary