Home
Search results “Determining genotypes in autosomal dominant”
Solving pedigree genetics problems
 
12:27
Once you have a background in pedigree conventions, this video should provide you with the tools to evaluate a pedigree to determine if a given trait could be autosomal dominant, autosomal recessive, or X-linked recessive.
Views: 278943 BiologyMonk
Pedigree analysis- autosomal dominant
 
15:30
This video about pedigree analysis explains how to analyze pedigree charts and family tree studies for autosomal dominant inheritance of a disease. For more information, log on to- http://shomusbiology.weebly.com/ Download the study materials here- http://shomusbiology.weebly.com/bio-materials.html
Views: 88573 Shomu's Biology
Pedigree Analysis methods - dominant, recessive and x linked pedigree
 
22:13
Pedigree analysis by suman bhattacharjee - This lecture explains about the different rules of pedigree analysis. It explains how to find a pedigree based on characteristics with examples as dominant pedigree, recessive pedigree and x linked pedigree. Dominant inheritance - affect shown in every generation recessive inheritance - skips generation X linked recessive trait - Male offspring are affected more. For more information, log on to- http://www.shomusbiology.com/ Get Shomu's Biology DVD set here- http://www.shomusbiology.com/dvd-store/ Download the study materials here- http://shomusbiology.com/bio-materials.html Remember Shomu’s Biology is created to spread the knowledge of life science and biology by sharing all this free biology lectures video and animation presented by Suman Bhattacharjee in YouTube. All these tutorials are brought to you for free. Please subscribe to our channel so that we can grow together. You can check for any of the following services from Shomu’s Biology- Buy Shomu’s Biology lecture DVD set- www.shomusbiology.com/dvd-store Shomu’s Biology assignment services – www.shomusbiology.com/assignment -help Join Online coaching for CSIR NET exam – www.shomusbiology.com/net-coaching We are social. Find us on different sites here- Our Website – www.shomusbiology.com Facebook page- https://www.facebook.com/ShomusBiology/ Twitter - https://twitter.com/shomusbiology SlideShare- www.slideshare.net/shomusbiology Google plus- https://plus.google.com/113648584982732129198 LinkedIn - https://www.linkedin.com/in/suman-bhattacharjee-2a051661 Youtube- https://www.youtube.com/user/TheFunsuman Thank you for watching
Views: 131727 Shomu's Biology
Inheritance of autosomal dominant trait
 
03:58
A genetic carrier (or just carrier), is a person or other organism that has inherited a recessive allele for a genetic trait or mutation but does not display that trait or show symptoms of the disease. Carriers are, however, able to pass the allele onto their offspring, who may then express the gene if they inherit the recessive allele from both parents. The chance of two carriers having a child with the disease is 25%. This phenomenon is a direct result of the recessive nature of many genes. Punnett square depicting a cross between two genetic carriers. The chance of two genetic carriers having a child with two copies of the recessive gene, thus being homozygous recessive, is 25%. Examples: - Cystic fibrosis - Sickle cell anemia
Autosomal and X Linked Inheritance
 
11:12
This lecture explains about the the autosomal and x linked inheritance. This video explains the properties of sex linked inheritance and the genetics pedigree. Autosomal trait is the one where the gene responsible for the trait is carried by Autosomes or body cell chromosomes. Sex linked trait or X linked trait is the one where the gene responsible for the trait is carried by X chromosomes. So most of the X linked trait is predominant ion male as males have only one X chromosome. For more information, log on to- http://www.shomusbiology.com/ Get Shomu's Biology DVD set here- http://www.shomusbiology.com/dvd-store/ Download the study materials here- http://shomusbiology.com/bio-materials.html Remember Shomu’s Biology is created to spread the knowledge of life science and biology by sharing all this free biology lectures video and animation presented by Suman Bhattacharjee in YouTube. All these tutorials are brought to you for free. Please subscribe to our channel so that we can grow together. You can check for any of the following services from Shomu’s Biology- Buy Shomu’s Biology lecture DVD set- www.shomusbiology.com/dvd-store Shomu’s Biology assignment services – www.shomusbiology.com/assignment -help Join Online coaching for CSIR NET exam – www.shomusbiology.com/net-coaching We are social. Find us on different sites here- Our Website – www.shomusbiology.com Facebook page- https://www.facebook.com/ShomusBiology/ Twitter - https://twitter.com/shomusbiology SlideShare- www.slideshare.net/shomusbiology Google plus- https://plus.google.com/113648584982732129198 LinkedIn - https://www.linkedin.com/in/suman-bhattacharjee-2a051661 Youtube- https://www.youtube.com/user/TheFunsuman Thank you for watching the video lecture on Autosomal and X Linked Inheritance.
Views: 83576 Shomu's Biology
Test Cross (Determining Genotype)
 
09:54
Donate here: http://www.aklectures.com/donate.php Website video link: http://www.aklectures.com/lecture/test-cross Facebook link: https://www.facebook.com/aklectures Website link: http://www.aklectures.com
Views: 87017 AK LECTURES
Pedigree Analysis 1: How to solve a genetic pedigree No. 1
 
09:13
Biology teacher Andrew Douch explains how to systematically study a genetic pedigree, to determine the most likely mode of inheritance.
Views: 743898 Andrew Douch
Learn Biology: How to Draw a Punnett Square
 
04:21
Check out Bas Rutten's Liver Shot on MMA Surge: http://bit.ly/MMASurgeEp1 A Punnett square is used to predict the chances of an offspring to have its parents' traits. These squares are most commonly divided into four parts, with each part equalling a 25% chance of the offspring receiving that set of genes. More complicated squares may have more than four parts, though the same basic method applies. The letters surrounding and within each square represent alleles. They are one part of a gene pair occupying a specific part of a chromosome. All dominate alleles have capital letters, while the recessive ones are lowercase. Dominate alleles will always overpower recessive ones in the expression of the gene. If the alleles for a parent do not match, they are known as heterozygous. In the image above the Gg is heterozygous. This can happen if there is a dominate and a recessive gene in the parent. If the alleles are the same for that expressed gene, it is known as homozygous. This is seen if both alleles are dominate or if both alleles are recessive; e.g., GG or gg. In order for a recessive gene to be expressed, the alleles must be homozygous. Step 1: --------------------------------------------------------------------- Draw the Punnett square. This is done by drawing a square, followed by a straight line up and down and another from side to side. This will quarter, or create 4 equally sized boxes within the square. Step 2: --------------------------------------------------------------------- Place the father's alleles on the top of the Punnett square with one letter above each box. Place the mother's alleles on the left hand side of the square, with one letter in front of each box. Be sure to use capital letters for the dominate genes and lower case letters for the recessive alleles. For this example, let's say this square represents the color of a flower. The father has one dominant blue and one recessive orange allele. The mother has two recessive orange alleles. Step 3: --------------------------------------------------------------------- Drop the father's alleles down into the squares and bring the mother's across. This will provide you with all possible combinations of alleles for the offspring. Each square represents a 25% chance of the offspring having that combination. If there are squares with the same cominations in them, the squares can be added together to determine the percentage. Conclusion: --------------------------------------------------------------------- From the completed square above, we can see that 50% of offspring will be blue since any dominant allele paired with a recessive one will win. There are, however, two homozygous combinations in which both genes are recessive, so 50% of the offspring will be orange. This means that half of the offspring will be blue, while the other half will be orange. Easy, right? Read more by visiting our page at: http://www.mahalo.com/how-to-draw-a-punnett-square/
Views: 1197041 mahalodotcom
How to solve pedigree probability problems
 
13:40
More of my videos on the topic: How to read a pedigree like a pro https://www.youtube.com/watch?v=5OlpOEC9vQ8 How to read a pedigree like a pro - 2 https://www.youtube.com/watch?v=Vxl-18BaUag How to read a pedigree like a pro - 3 https://www.youtube.com/watch?v=0pYj00896p4 How to read a pedigree like a pro - 4 https://www.youtube.com/watch?v=kHlxYBlM3fA How to read a pedigree like a pro - 5 https://www.youtube.com/watch?v=3Dia_W0ky-I How to read a pedigree like a pro - 6 https://www.youtube.com/watch?v=0CXI3r0NC2Q A pedigree chart is a diagram that shows the occurrence and appearance or phenotypes of a particular gene or organism and its ancestors from one generation to the next, most commonly humans, show dogs, and race horses. The word pedigree is a corruption of the French "pied de grue" or crane's foot, because the typical lines and split lines (each split leading to different offspring of the one parent line) resemble the thin leg and foot of a crane. A Pedigree results in the presentation of family information in the form of an easily readable chart. Pedigrees use a standardized set of symbols, squares represent males and circles represent females. Pedigree construction is a family history, and details about an earlier generation may be uncertain as memories fade. If the sex of the person is unknown a diamond is used. Someone with the phenotype in question is represented by a filled-in (darker) symbol. Heterozygotes, when identifiable, are indicated by a shade dot inside a symbol or a half-filled symbol. Relationships in a pedigree are shown as a series of lines. Parents are connected by a horizontal line and a vertical line leads to their offspring. The offspring are connected by a horizontal sibship line and listed in birth order from left to right. If the offspring are twins then they will be connected by a triangle. If an offspring dies then its symbol will be crossed by a line. If the offspring is still born or aborted it is represented by a small triangle. Each generation is identified by a Roman numeral (I, II, III, and so on), and each individual within the same generation is identified by an Arabic number (1, 2, 3, and so on). Analysis of the pedigree using the principles of Mendelian inheritance can determine whether a trait has a dominant or recessive pattern of inheritance. Pedigrees are often constructed after a family member afflicted with a genetic disorder has been identified. This individual, known as the proband, is indicated on the pedigree by an arrow.
Determining Inheritance Patterns - Genetics Pedigree Analysis
 
05:21
Watch the updated video, it's shorter! https://www.youtube.com/watch?v=1SZEXbBcYCc This video is a flowchart walk-through for determining inheritance patterns of genetic disorders from a pedigree chart.
Views: 11804 VirgilARicks
How to solve problems and find genotype/phenotype as result of the cross?
 
09:47
1. Genetic Crosses 2. Think About It... How can an offspring have a certain trait if neither of its parents displayed that trait? How many alleles does an offspring get from each parent? 3. Law of Segregation Each parent passes on ONE of two alleles to its offspring. LAW OF SEGREGATION: Each pair of alleles is segregated, or separated, during the formation of gametes. 4. Meiosis Aa A a A a Chromosomes double A A a a 5. Law of Independent Assortment Alleles for different characteristics are distributed to different gametes independently. 6. Example A In rabbits, brown fur (B) is dominant to white fur (b). If a rabbit is heterozygous for fur color, what gametes could be created? 7. Example B A rabbit is homozygous recessive for fur. What color is it? What percentage of its gametes would have the allele for brown fur? 8. Punnett Squares Chart that shows possible combinations when egg and sperm combine 9. Punnett Squares Draw a square as shown. Each box represents a possible combination of alleles in the offspring. 10. Punnett Squares Determine which alleles will be in the sex cells of each parent. Write the egg and sperm possibilities along the top and side. 11. Punnett Squares Copy the alleles into the boxes below and across from them. Calculate percentage of offspring with each phenotype. 12. Punnett Squares Your problems must display the following: Original cross Punnett Square Resulting phenotypes (# or percentage) Phenotype ratio 13. Example I In pot-bellied pigs, grey fur (G) is dominant to pink fur (g). A homozygous dominant male pig mates with a pink female pig. Predict the possible F 1 offspring. 14. Example II A man heterozygous for a cleft chin, a dominant trait, mates with a woman with no cleft chin. What percentage of their children will have a cleft chin? 15. Example III Pollen from a rose bush with red flowers, a dominant trait, was crossed to a second bush with red flowers. (White is the recessive trait.) If the first plant was homozygous and the second plant was heterozygous, predict the possibilities of their offspring. 16. Example IV In parrots, green feathers are dominant over red feathers. Two heterozygous birds are crossed. What are the possible genotypes of the F 1 generation? 17. F 1 Crosses A common cross involves crossing two individuals with opposing traits, one homozygous dominant and one homozygous recessive, the crossing their F 1 offspring to analyze the F 2 generation. 18. Example V Cross a homozygous dominant and homozygous recessive parrot, then cross two of the F 1 offspring. What is the ratio of dominant and recessive offspring in the F 2 ? G = green G = red 19. A Common Ratio Any time a homozygous dominant individual is crossed with a homozygous recessive individual, the F 2 generation will have a 3:1 ratio of dominant traits to recessive traits. 20. Pea Plant Experiments Experiment 1: Plant Height Mendel crossed a short plant with a tall plant. All offspring were tall. Crossing two of the offspring resulted in 787 tall plants and 277 short plants -- HOW??? 21. Pea Plant Experiments Experiment 2: Seed Color Mendel crossed a yellow-seed plant with a green-seed plant. All offspring had yellow seeds. Crossing two of the offspring resulted in 6,022 yellow-seed plants and 2001 green-seed plants -- HOW??? 22. Monohybrid Crosses The crosses we have been completing are called "monohybrid crosses" because they deal with only one trait. 23. Other Types of Inheritance 24. Types of Inheritance Dominant-Recessive Multiple Alleles Codominance Incomplete Dominance 25. Multiple Alleles Characteristics are determined by more than two alleles Example: human blood types (A, B, AB, O) 26. Incomplete Dominance Heterozygous individuals have a phenotype in-between the dominant and recessive phenotypes 27. Incomplete Dominance Carnations can be red, white, or pink R R = red R' R' = white R R' = pink 28. Example VI Cross a red carnation with a white carnation. What is the phenotype ratio? 29. Example VII Cross two F 1 carnations from the previous cross. What is the phenotype ratio of the F 2 generation? 30. Example VIII Chinchillas are fuzzy, South American rodents. Two alleles control their fur color: F, which represents black, and f, which represents white. Heterozygous chinchillas are grey. Cross a grey chinchilla male with a white female. Give the possible offspring colors and ratio. 31. Example VIII 32. Codominance Heterozygous individuals display both phenotypes Examples: Human blood type AB Roan horses = red and white fur Calico cats = orange and black fur 33. Example IX A roan mare, heterozygous for coat color, is crossed with a red stallion. Describe their offspring. (R codes for red while R' codes for white.) 34. Example X A calico cat has the genotype BB'. What is the ratio of F 2 offspring if a pure-breeding black cat (BB) is crossed with a pure-breeding orange cat (B'B'), and then their offspring are crossed?
Genotypes and pedigrees
 
13:48
How to determine a genotype from a pedigree
Views: 2009 Kaitlyn Summers
Pedigree analysis | How to solve pedigree problems?
 
14:23
Pedigree analysis technique and rule - This lecture explains how to solve pedigree problems. With the help of few easy tricks and techniques you can solve any pedigree problems in minutes by applying the knowledge of pedigree analysis described in this video lecture. So watch this video and solve pedigree problems fast. For more information, log on to- http://www.shomusbiology.com/ Get Shomu's Biology DVD set here- http://www.shomusbiology.com/dvd-store/ Download the study materials here- http://shomusbiology.com/bio-materials.html Remember Shomu’s Biology is created to spread the knowledge of life science and biology by sharing all this free biology lectures video and animation presented by Suman Bhattacharjee in YouTube. All these tutorials are brought to you for free. Please subscribe to our channel so that we can grow together. You can check for any of the following services from Shomu’s Biology- Buy Shomu’s Biology lecture DVD set- www.shomusbiology.com/dvd-store Shomu’s Biology assignment services – www.shomusbiology.com/assignment -help Join Online coaching for CSIR NET exam – www.shomusbiology.com/net-coaching We are social. Find us on different sites here- Our Website – www.shomusbiology.com Facebook page- https://www.facebook.com/ShomusBiology/ Twitter - https://twitter.com/shomusbiology SlideShare- www.slideshare.net/shomusbiology Google plus- https://plus.google.com/113648584982732129198 LinkedIn - https://www.linkedin.com/in/suman-bhattacharjee-2a051661 Youtube- https://www.youtube.com/user/TheFunsuman Thank you for watching the genetics lecture on Pedigree analysis and How to solve pedigree problems?
Views: 376781 Shomu's Biology
Pedigree
 
17:20
Dr. Phoenix shows how to read pedigrees and how to determine the genotypes of individuals on the pedigree. Please click the link to go to the updated version of this video here: https://youtu.be/r2WRipen-do
Views: 17437 Glenn E Phoenix, DC
Genetic Inheritance, Autosomal Dominant, X-linked Recessive, Mitochondrial Disease Polygenic mtDNA
 
14:19
http://www.stomponstep1.com/genetic-inheritance-autosomal-dominant-x-linked-recessive-mitochondrial-disease/ Autosomal Dominant Inheritance is when one allele, on any chromosome other than X or Y, is expressed over another allele of the same gene. This allele determines the phenotype (observable characteristics) and is referred to as dominant. The allele that is does not affect the phenotype is referred to as recessive. The dominant allele is often given the capital letter for a character while the recessive allele is given the lower case. Therefore, a heterozygous individual who is a carrier for the recessive gene would be represented as Aa. Usually on a pedigree nearly every generation has an affected individual. Autosomal Recessive Inheritance is basically the opposite of autosomal dominant. Recessive alleles only change the phenotype when there is no dominant allele present. Heterozygous individuals do not show the phenotype of the recessive allele, but can pass this allele on to their offspring. These heterozygous individuals are called carriers. Usually on a pedigree few individuals are affected. X Linked Recessive Inheritance is a type of recessive inheritance for genes on the X chromosome. Males express the phenotype when they inherit 1 effected allele, while females need to inherit 2 effected alleles. This is because the gene lies on the X chromosome, and males only receive a single X while females receive 2. Males cannot pass the effected X allele onto sons, because a son must receive a Y from the father to be male. Males are affected far more often than females. Women are very rarely affected by these disorders, and are primarily heterozygous carriers when they have the gene. Mitochondria have DNA (mtDNA) that is circular and separate from the chromosomes in the nucleus. Mitochondrial Inheritance is only through the mothers and the fathers mitochondrial DNA is not passed onto children. Heterosplasmy is when a single individual has more than 1 type of mitochondrial DNA in their body due to mutations. The most common disease with this type of inheritance is Mitochondrial Myopathy which presents with "Ragged Red" muscle fibers on biopsy Polygenic or Multifactorial Inheritance is when the phenotype is not dictated by a single gene locus. These types of diseases are determined by an interaction between many contributing genetic and environmental factors. Variable Expressivity = same genetic defect presents differently in different patients. Neurofibromatosis is an example Mosaicism = when populations of cells within a single individual have different genotypes due to post-fertilization changes. Often in reference to chromosomal abnormalities caused by improper mitosis. Germline Mosacism is when only gametes (sperm and eggs) are affected by the genetic defect. Therefore, the individual would not show signs of the disease, but they could pass it on to their offspring Pleiotrophy = a single genetic defect has multiple effects (same gene is expressed in many different tissues) Incomplete Penetrance = not everyone with genetic defect gets the disease. Low penetrance means many people with the genotype do not show the phenotype Pictures Used (In order of appearance) • "Autosomal Dominant" by Domaina available at ttp://en.wikipedia.org/wiki/File:Autosomal_dominant_-_en.svg via Creative Commons 3.0 Attribution Share Alike • "XlinkedRecessive" by US National Library of Medicine available at http://en.wikipedia.org/wiki/File:XlinkRecessive.jpg via Public Domain • "Mitochondrial" By US National Library of Medicine available at http://en.wikipedia.org/wiki/File:Mitochondrial.jpg by Public Domain
Views: 56588 Stomp On Step 1
Autosomal Recessive vs. Autosomal Dominance
 
13:08
This video will compare and contrast autosomal recessive and autosomal dominance inheritance patterns. Keywords: Genetics Gene Allele Heredity Punnett square Genotype Phenotype Homozygous Heterozygous Cystic fibrosis Sickle cell PKU Albinism Huntington's disease Mendel Autosome Chromosome Karyotype Inheritance
Views: 95957 Beverly Biology
How to read a pedigree
 
17:08
Dr. Phoenix discusses how to read a pedigree chart and how to determine the genotypes of the individuals on the chart.
Views: 1350 Glenn E Phoenix, DC
Pedigree Notes   Analyzing the Genotypes
 
07:09
This video walks you through how to determine the genotypes of a person based on a pedigree.
Views: 2452 Katie D
Pedigrees
 
09:42
Explore autosomal recessive trait and X-linked recessive trait tracking in pedigrees with the Amoeba Sisters! Matching handout available here: http://www.amoebasisters.com/handouts.html. See table of contents by expanding details! 👇 Table of Contents: Introducing Symbols/Numbering in Pedigree 0:40 Meaning of Shading in Shapes 1:19 Introducing Pedigree Tracking Autosomal Recessive Trait 2:44 Working with Pedigree Tracking Autosomal Recessive Trait 4:07 X-Linked Pedigree 6:45 What is Meant by "Half-Shading" Shapes in Pedigree? 9:01 Support us on Patreon! http://www.patreon.com/amoebasisters Our FREE resources: GIFs: http://www.amoebasisters.com/gifs.html Handouts: http://www.amoebasisters.com/handouts.html Comics: http://www.amoebasisters.com/parameciumparlorcomics Connect with us! Website: http://www.AmoebaSisters.com Twitter: http://www.twitter.com/AmoebaSisters Facebook: http://www.facebook.com/AmoebaSisters Tumblr: http://www.amoebasisters.tumblr.com Pinterest: http://www.pinterest.com/AmoebaSister­s Instagram: https://www.instagram.com/amoebasistersofficial/ Visit our Redbubble store at http://www.amoebasisters.com/store.html The Amoeba Sisters videos demystify science with humor and relevance. The videos center on Pinky's certification and experience in teaching science at the high school level. Pinky's teacher certification is in grades 4-8 science and 8-12 composite science (encompassing biology, chemistry, and physics). Amoeba Sisters videos only cover concepts that Pinky is certified to teach, and they focus on her specialty: secondary life science. For more information about The Amoeba Sisters, visit: http://www.amoebasisters.com/about-us.html We cover the basics in biology concepts at the secondary level. If you are looking to discover more about biology and go into depth beyond these basics, our recommended reference is the FREE, peer reviewed, open source OpenStax biology textbook: https://openstax.org/details/books/biology We take pride in our AWESOME community, and we welcome feedback and discussion. However, please remember that this is an education channel. See YouTube's community guidelines https://www.youtube.com/yt/policyandsafety/communityguidelines.html and YouTube's policy center https://support.google.com/youtube/topic/2676378?hl=en&ref_topic=6151248. We also reserve the right to remove comments with vulgar language. Music is this video is listed free to use/no attribution required from the YouTube audio library https://www.youtube.com/audiolibrary/music?feature=blog We have YouTube's community contributed subtitles feature on to allow translations for different languages. YouTube automatically credits the different language contributors below (unless the contributor had opted out of being credited). We are thankful for those that contribute different languages. If you have a concern about community contributed contributions, please contact us.
Views: 642208 Amoeba Sisters
100% Guaranteed Trick to solve Pedigree Chart
 
09:04
1. 100% Guaranteed Trick to solve Inheritance pattern in exams. 2. Least time taking trick available on Internet/ YouTube. 3. Easiest Trick available. 4. Solving Pedigree chart has now become a simple game with this trick. Like, Share, Subscribe!!! Youtube: http://www.youtube.com/c/AnatomyClassesbyDrSushant Twitter: https://twitter.com/anatomy_classes Facebook: https://www.facebook.com/AnatomyClasssesByDrSushant Instagram: https://www.instagram.com/anatomyclassesbydrsushant About : Anatomy Classes By Dr. Sushant is a YouTube Channel, where you will find anatomy videos in english :)
X Linked Dominant Pedigree
 
11:17
Views: 54371 Biologybyme
Pedigree probability problems | Risk calculation
 
21:01
Pedigree probability problems - lecture explains about how to solve genetics probability problems on pedigree analysis . this video lecture explains the Pedigree probability problems with example. Here I will share the trick about how to solve those Pedigree problems associated with probability. For more information, log on to- http://www.shomusbiology.com/ Get Shomu's Biology DVD set here- http://www.shomusbiology.com/dvd-store/ Download the study materials here- http://shomusbiology.com/bio-materials.html Remember Shomu’s Biology is created to spread the knowledge of life science and biology by sharing all this free biology lectures video and animation presented by Suman Bhattacharjee in YouTube. All these tutorials are brought to you for free. Please subscribe to our channel so that we can grow together. You can check for any of the following services from Shomu’s Biology- Buy Shomu’s Biology lecture DVD set- www.shomusbiology.com/dvd-store Shomu’s Biology assignment services – www.shomusbiology.com/assignment -help Join Online coaching for CSIR NET exam – www.shomusbiology.com/net-coaching We are social. Find us on different sites here- Our Website – www.shomusbiology.com Facebook page- https://www.facebook.com/ShomusBiology/ Twitter - https://twitter.com/shomusbiology SlideShare- www.slideshare.net/shomusbiology Google plus- https://plus.google.com/113648584982732129198 LinkedIn - https://www.linkedin.com/in/suman-bhattacharjee-2a051661 Youtube- https://www.youtube.com/user/TheFunsuman Thank you for watching the genetics lecture on how to solve Pedigree probability problems.
Views: 76809 Shomu's Biology
Understanding Autosomal Dominant Conditions
 
03:32
What are autosomal dominant conditions? How do they arise and what does it mean for the affected person's children? This short video animation from the National Centre for Medical Genetics was produced by University College Dublin with support from the Health Research Board and Shire Pharmaceuticals. For further information, see: www.ucd.ie/medicine/rarediseases
Views: 45062 UCD Medicine
Dominant vs Recessive Traits
 
06:30
Learn how dominant and recessive human traits are represented and interact with each other
Views: 120807 ScinceGonnaGetYou
4.3.2 Determine the genotypes and phenotypes of the offspring of a monohybrid cross
 
02:07
A monohybrid cross is one that involves only one trait. Here the example is used of stem height in pea plants. Tall plants are dominant to dwarf plants, therefore an uppercase letter (T) is used for the tall allele while a lowercase letter is used for the dwarf allele. Here we cross a heterozygous tall plant with a dwarf plant. Each plant's genotype needs to be identified and must have two alleles in a monohybrid cross. As the tall plant is specified as heterozygous, it therefore has two different alleles, so its genotype must be Tt. Since dwarf stems are recessive to tall, the only genotype that can give a dwarf plant is tt. Gametes are produced by meiosis and therefore have only one allele. The heterozygous tall plant (Tt) produces two kinds of gametes: T and t. The dwarf plant only one kind of gamete (t). The punnett grid, or punnett square is used to see the probability of the different kinds of offspring being produced. From this example we can see that the genotypic ratio is 50% Tt and 50% tt. The phenotypic ratio is 50% tall (from the Tt) and 50% dwarf (from the tt).
Views: 61006 Stephanie Castle
Calculating probabilities
 
16:26
This video summarizes how to calculate probabilities when approaching pedigree and inheritance problems in Genetics.
Views: 27116 Dr. Marina Crowder
Punnett square practice problems (simple)
 
06:10
This is one of a series of video on genetics. This video will provide some simple Punnett square practice problems involving complete dominance. This video assumes some knowledge of genetics vocabulary, but runs through the process of setting up and filling out Punnett squares quite thoroughly.
Views: 248083 BiologyMonk
Pedigrees | Classical genetics | High school biology | Khan Academy
 
06:08
An introduction to reading and analyzing pedigrees. View more lessons or practice this subject at https://www.khanacademy.org/science/high-school-biology/hs-classical-genetics/hs-pedigrees/v/pedigrees?utm_source=youtube&utm_medium=desc&utm_campaign=highschoolbiology Khan Academy is a nonprofit organization with the mission of providing a free, world-class education for anyone, anywhere. We offer quizzes, questions, instructional videos, and articles on a range of academic subjects, including math, biology, chemistry, physics, history, economics, finance, grammar, preschool learning, and more. We provide teachers with tools and data so they can help their students develop the skills, habits, and mindsets for success in school and beyond. Khan Academy has been translated into dozens of languages, and 15 million people around the globe learn on Khan Academy every month. As a 501(c)(3) nonprofit organization, we would love your help! Donate or volunteer today! Donate here: https://www.khanacademy.org/donate?utm_source=youtube&utm_medium=desc Volunteer here: https://www.khanacademy.org/contribute?utm_source=youtube&utm_medium=desc
Views: 52348 Khan Academy
How to solve genetics probability problems
 
16:58
This genetics lecture explains How to solve genetics probability problems with simpler and easy tricks and this video also explains when to use addition or multiplication rule to solve probability problems in genetics. So watch this video lecture to learn how to solve genetics problems with probability and risk calculations using addition and multiplication rule. For more information, log on to- http://www.shomusbiology.com/ Get Shomu's Biology DVD set here- http://www.shomusbiology.com/dvd-store/ Download the study materials here- http://shomusbiology.com/bio-materials.html Remember Shomu’s Biology is created to spread the knowledge of life science and biology by sharing all this free biology lectures video and animation presented by Suman Bhattacharjee in YouTube. All these tutorials are brought to you for free. Please subscribe to our channel so that we can grow together. You can check for any of the following services from Shomu’s Biology- Buy Shomu’s Biology lecture DVD set- www.shomusbiology.com/dvd-store Shomu’s Biology assignment services – www.shomusbiology.com/assignment -help Join Online coaching for CSIR NET exam – www.shomusbiology.com/net-coaching We are social. Find us on different sites here- Our Website – www.shomusbiology.com Facebook page- https://www.facebook.com/ShomusBiology/ Twitter - https://twitter.com/shomusbiology SlideShare- www.slideshare.net/shomusbiology Google plus- https://plus.google.com/113648584982732129198 LinkedIn - https://www.linkedin.com/in/suman-bhattacharjee-2a051661 Youtube- https://www.youtube.com/user/TheFunsuman Thank you for watching the genetics lecture on How to solve genetics probability problems.
Views: 168224 Shomu's Biology
Pedigrees, Patterns of Genetic Inheritance, Autosomal Dominant Recessive X-Linked Mitocondrial
 
08:16
http://www.stomponstep1.com/pedigrees-patterns-of-genetic-inheritance/ Before you watch this video you should really watch the previous video in the section which covers Types of Inheritance (http://www.stomponstep1.com/genetic-inheritance-autosomal-dominant-x-linked-recessive-mitochondrial-disease/) Pedigrees are graphical representations of ancestry with respect to one or more disease(s). Males are represented with a square while females are represented with a circle. The shape is black/filled in if the individual is affected by the disease. The shape is empty/white if the individual is not affected by the disease (may be unaffected or carrier). Usually each generation (row) is labeled with a roman numeral while each individual is labeled with a number. Autosomal Dominant Autosomal recessive X linked recessive Mitochondrial Now that you are done with this video you should check out the next video in the Genetics section which covers Purine Salvage Pathway & Lesch-Nyhan Syndrome(http://www.stomponstep1.com/purine-salvage-pathway-lesch-nyhan-syndrome/)
Views: 114065 Stomp On Step 1
The Hardy-Weinberg Principle:  Watch your Ps and Qs
 
12:16
The Hardy-Weinberg Principle states that allele and genotype frequencies in populations remain stable over time, given certain assumptions. What assumptions? What does the principle mean? And how do you SOLVE those Hardy-Weinberg PROBLEMS? Everything shall be revealed in this video - with some penguins of course. They make everything go down easier. JOIN THE FUN all over the WEB: SUBSCRIBE: http://www.youtube.com/user/ThePenguinProf FACEBOOK: https://www.facebook.com/ThePenguinProf GOOGLE+: https://plus.google.com/+Penguinprof/posts TWITTER: https://twitter.com/penguinprof WEB: http://www.penguinprof.com/ Links to Videos Mentioned: Mendelian Genetics: http://youtu.be/xtJwHytHRfI How to Solve Genetics Problems: http://youtu.be/Qcmdb25Rnyo Solution for the additional problem I showed at the end: Allele Frequencies: q = 0.04 p = 0.96 Genotype Frequencies: homozygous dominant: 0.92 Heterozygous: 0.08 Homozygous recessive: 0.002 Answer to the additional problem step-by-step: http://www.penguinprof.com/uploads/8/4/3/1/8431323/solving_hardy-weinberg_problems.pdf ------------------------------------------------------------------------------------------ Video Details: Population Genetics: The Hardy-Weinberg Principle You need to know: gene vs. allele gentoype vs. phenotype understanding probabilities (and vs. or) Punnett Square Hardy-Weinberg Principle Timeline of Discoveries Darwin, Mendel, DeVries, Correns Hardy, Weinberg, Castle Mendelian Genetics Gets HOT Particles are inherited! Traits aren't blended! Cambridge opens a department of Genetics So What's it All About? It's about frequencies When talking about population genetics, we are interested in the prevalence of a particular allele or genotype in a population The Hardy-Weinberg Principle States: Frequencies of alleles and genotypes in a population will remain constant over time in the absence of other evolutionary influences Assumptions Organisms are diploid Generations are non-overlapping Population must be large No immigration or emigration No mutation in the gene of interest No natural selection occurs (individuals reproduce at equal rates) Mating is random Alleles and Allele Frequency Penguin Prof Helpful Hints The Sum of All Possible Outcomes MUST Equal 1 p+q = 1 ALLELE FREQUENCY 2 Alleles = Genotype p2 + 2pq + p2 = 1 What if There are Three Alleles? (p, q and r) Sample Problem In a population of 1,000 penguins, 12 have blue feet. Find the frequency of the blue allele, the yellow allele and the frequencies of the three possible genotypes in this population. Solving Hardy-Weinberg Problems Assign the alleles Frequency of the dominant allele is 'p' Frequency of the recessive allele is 'q' Calculate q by taking the square root of the number of homozygous recessive individuals Calculate p (the allele frequencies must equal 1, so p = 1 − q) Use p and q to calculate the other genotype frequencies: frequency of homozygous dominant individuals = p2 frequency of heterozygous individuals = 2pq frequency of homozygous recessives = q2 This may help: Hardy-Weinberg Punnett Square Try Another One... In a population of 130,000 magical mice, green fur is dominant over orange. If there are 300 orange mice in a population of 130,000, find the following (assume population is in Hardy-Weinberg equilibrium): 1. Frequency of dominant (green) allele 2. Frequency of recessive (orange) allele 3. Frequency of each genotype
Views: 341004 ThePenguinProf
Inheritance Patterns | Reading Pedigree Charts
 
03:31
Download the free flowchart Colored: https://drive.google.com/open?id=1bvQcJjnybMXrIfOf1RmL-JOQtD0KKhcj Black & White: https://drive.google.com/open?id=1WfI3GLJrlN0b7IVhNClAJqzOX9oPsY1h ---RECOMMENDED STUDY GUIDES--- Genetics: https://amzn.to/2BzK1S2 Biology I: https://amzn.to/2SasaIl Biology II: https://amzn.to/2EKKGEv Biology terminology: https://amzn.to/2BBHuXo ---STUDY RESOURCES--- 10 Steps to Earning Awesome Grades: https://amzn.to/2CU4vHc How to Become a Straight-A Student: https://amzn.to/2VCfWdG ---VIDEOS AND PLAYLISTS--- Test tips and tricks: https://bit.ly/2VAnjTb Eukaryotic vs Prokaryotic Cells: https://bit.ly/2QDqkOY Plant cell vs Animal cell: https://bit.ly/2M10y6j Smooth ER: https://bit.ly/2FpvYD4 ---DIVE IN--- Follow me on Twitter: https://twitter.com/2MinuteClasroom Get Involved with the 2 Minute Classroom Community: https://bit.ly/2QvgbYy Subscribe to 2 Minute Classroom: https://bit.ly/2PdkPpk Find more at https://www.2minuteclassroom.com ---MY GEAR--- My mic - Blue Yeti Microphone: https://amzn.to/2Q6PoCc Full kit - Blue Yeti Microphone kit: https://amzn.to/2Q1lM9o GTX Graphics Card: https://amzn.to/2Pcygpp Animation Software: https://www.videoscribe.co/en/ DISCLAIMER: This video and description contains affiliate links, which means that if you click on some of the product links, I’ll receive a small commission. This helps support the channel and allows us to continue to make videos like this. Thank you for your support! Thanks for stopping by, today we are going to discuss how to determine inheritance patterns, so essentially how to read a pedigree chart. Like this one. If you are unfamiliar with pedigree charts or Mendelian genetics, you should watch some other videos before this one. We are going to create a flowchart to solve pedigrees, so you’ll simply take any given pedigree chart through a series of questions until you determine the inheritance pattern. And a note here, this flowchart we are going to build has a high degree of accuracy, but is not foolproof, the random nature of genetics make it impossible to be 100%. So let’s get started, the first two questions you’ll ask are, Are only males affected? AND are all sons of an affected father affected? If the answer is yes, then the pattern is Y linked, meaning a genetic disorder affiliated with the y chromosome. Only males possess a Y chromosome, so that means all males receive their Y chromosome from their father. A Y linked trait will never show up in males without affected father. If you reach this point, you have your solution. If the answer is no, Then we ask if there are there any cases were affected children do not have at least one affected parent. If yes, it’s recessive though we don’t know what type. Being recessive, they must have two affected alleles in order to express the disorder, therefore, an affected child can have unaffected parents because they're both carries. However, it is possible that their parents could still be affected. If the answer is no, then it is a dominant disorder, and thus an affected child must have an affected parent. You should note that dominant patterns usually see someone affected in every generation in each affected linage, this means that once you see an affected parent, you will usually see it in every generation thereafter. It doesn’t skip generations very often. Moving down the recessive line we need to ask two more questions. Are all sons of affected mother infected? And are more males affected in general? If yes, it is X-linked recessive, meaning it’s attached to the X chromosome, since males only have one X chromosome, they are more likely to show, whereas females have two Xs, so a good one can mask the mutated one. Also, Males always receive their X chromosome from their mother, so if she is affected, she will have two X chromosomes with the mutation, and all sons are guaranteed to end up with it. If the answer is no, then it is autosomal recessive by default. Essentially, males and females are affected evenly, and affected mothers have unaffected sons. Moving on down the dominant line, we ask Are all of the daughters of an affected father affected? If yes, then it is X linked dominant, males only have one X chromosome, which goes to their daughter, so all their daughters will have that mutation. If no, then it is autosomal dominant by default. If there is a case where an affected father has an unaffected daughter, or an affected daughter has an unaffected father, you know it can’t be X linked, because the father only has one X and that will always to go to the daughter. So this is the whole flow chart, eventually I’ll make a website and have a downloadable PDF available. I’ll link that in the comments whenever I get to making it. In the meantime, subscribe to my channel so that you’re around when I do create my website. Thanks for watching, I’ll catch you next time.
Views: 13015 2 Minute Classroom
Punnett Squares and Sex-Linked Traits
 
06:12
Explore inheritance when carried on the X chromosome with the Amoeba Sisters! This video has a handout here: http://www.amoebasisters.com/handouts.html This video focuses on how to do general Punnett square problems that involve traits on the sex chromosomes (X and Y chromosomes). We do want to point out though that when it comes to biological sex- it can be influenced by more than just sex chromosomes X and Y. For example, the SRY gene, plays a major role in human biological sex determination. While this video only focuses on solving sex-linked trait problems in a Punnett square, here are some further reading suggestions to learn about the SRY gene and its role in biological sex. Further Reading Suggestions: (Updated 2018)********** About SRY Gene from NIH: https://ghr.nlm.nih.gov/gene/SRY About SRY and Sex Determination from Harvard: http://sitn.hms.harvard.edu/flash/2016/im-xy-know-sex-determination-systems-101/ *************************************************************** Support us on Patreon! http://www.patreon.com/amoebasisters Our FREE resources: GIFs: http://www.amoebasisters.com/gifs.html Handouts: http://www.amoebasisters.com/handouts.html Comics: http://www.amoebasisters.com/parameciumparlorcomics Connect with us! Website: http://www.AmoebaSisters.com Twitter: http://www.twitter.com/AmoebaSisters Facebook: http://www.facebook.com/AmoebaSisters Tumblr: http://www.amoebasisters.tumblr.com Pinterest: http://www.pinterest.com/AmoebaSister­s Instagram: https://www.instagram.com/amoebasistersofficial/ Visit our Redbubble store at http://www.amoebasisters.com/store.html The Amoeba Sisters videos demystify science with humor and relevance. The videos center on Pinky's certification and experience in teaching science at the high school level. Pinky's teacher certification is in grades 4-8 science and 8-12 composite science (encompassing biology, chemistry, and physics). Amoeba Sisters videos only cover concepts that Pinky is certified to teach, and they focus on her specialty: secondary life science. For more information about The Amoeba Sisters, visit: http://www.amoebasisters.com/about-us.html We cover the basics in biology concepts at the secondary level. If you are looking to discover more about biology and go into depth beyond these basics, our recommended reference is the FREE, peer reviewed, open source OpenStax biology textbook: https://openstax.org/details/books/biology We take pride in our AWESOME community, and we welcome feedback and discussion. However, please remember that this is an education channel. See YouTube's community guidelines https://www.youtube.com/yt/policyandsafety/communityguidelines.html and YouTube's policy center https://support.google.com/youtube/topic/2676378?hl=en&ref_topic=6151248. We also reserve the right to remove comments with vulgar language. Music is this video is listed free to use/no attribution required from the YouTube audio library https://www.youtube.com/audiolibrary/music?feature=blog We have YouTube's community contributed subtitles feature on to allow translations for different languages. YouTube automatically credits the different language contributors below (unless the contributor had opted out of being credited). We are thankful for those that contribute different languages. If you have a concern about community contributed contributions, please contact us.
Views: 892277 Amoeba Sisters
Introduction to Heredity
 
17:27
Heredity and Classical Genetics. Dominant and recessive traits. Heterozygous and homozygous genotypes. More free lessons at: http://www.khanacademy.org/video?v=eEUvRrhmcxM
Views: 1219394 Khan Academy
Genetics Pedigree  Chart Analysis
 
09:17
Using a pedigree for a family with Huntington’s Disease (Autosomal Dominant Disorder). Assign notation and determine the genotypes of each person in this pedigree with respect to Huntington’s Disease
Alleles and Genes
 
08:07
Join the Amoeba Sisters as they discuss the terms "gene" and "allele" in context of a gene involved in PTC (phenylthiocarbamide) taste sensitivity. Note: as mentioned throughout video, the ability to taste PTC may be more complex than a single gene trait. This video serves as an introduction before exploring Punnett squares in our heredity series: https://www.youtube.com/watch?v=fcGDUcGjcyk&list=PLwL0Myd7Dk1FVxYPO_bVbk8oOD5EZ2o5W This video has a handout! http://www.amoebasisters.com/handouts While this video only focuses on basic understanding of alleles and genes as well as the ability to taste- or not taste- PTC (phenylthiocarbamide), we encourage learning more! Here is a recommended reading that expands on the genetics involved in tasting PTC and includes some of the history in how it was discovered: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349222/ Support us on Patreon! http://www.patreon.com/amoebasisters Our FREE resources: GIFs: http://www.amoebasisters.com/gifs.html Handouts: http://www.amoebasisters.com/handouts.html Comics: http://www.amoebasisters.com/parameciumparlorcomics Connect with us! Website: http://www.AmoebaSisters.com Twitter: http://www.twitter.com/AmoebaSisters Facebook: http://www.facebook.com/AmoebaSisters Tumblr: http://www.amoebasisters.tumblr.com Pinterest: http://www.pinterest.com/AmoebaSister­s Instagram: https://www.instagram.com/amoebasistersofficial/ Visit our Redbubble store at http://www.amoebasisters.com/store.html The Amoeba Sisters videos demystify science with humor and relevance. The videos center on Pinky's certification and experience in teaching science at the high school level. Pinky's teacher certification is in grades 4-8 science and 8-12 composite science (encompassing biology, chemistry, and physics). Amoeba Sisters videos only cover concepts that Pinky is certified to teach, and they focus on her specialty: secondary life science. For more information about The Amoeba Sisters, visit: http://www.amoebasisters.com/about-us.html We cover the basics in biology concepts at the secondary level. If you are looking to discover more about biology and go into depth beyond these basics, our recommended reference is the FREE, peer reviewed, open source OpenStax biology textbook: https://openstax.org/details/books/biology We take pride in our AWESOME community, and we welcome feedback and discussion. However, please remember that this is an education channel. See YouTube's community guidelines https://www.youtube.com/yt/policyandsafety/communityguidelines.html and YouTube's policy center https://support.google.com/youtube/topic/2676378?hl=en&ref_topic=6151248. We also reserve the right to remove comments with vulgar language. Music is this video is listed free to use/no attribution required from the YouTube audio library https://www.youtube.com/audiolibrary/music?feature=blog We have YouTube's community contributed subtitles feature on to allow translations for different languages, and we are thankful for those that contribute different languages! YouTube automatically credits the different language contributors below (unless the contributor had opted out of being credited). We are not affiliated with any of the translated subtitle credits that YouTube may place below. If you have a concern about community contributed contributions, please contact us.
Views: 547355 Amoeba Sisters
Interpreting Pedigree Charts
 
12:16
Pedigree charts can be used to determine if an inherited trait is dominant or recessive and if it is X-linked or autosomal.
Views: 2900 Tom Koch
Pedigree for determining probability of exhibiting sex linked recessive trait | Khan Academy
 
05:19
Pedigree for determining probability of exhibiting sex linked recessive trait. View more lessons or practice this subject at https://www.khanacademy.org/science/high-school-biology/hs-classical-genetics/hs-pedigrees/v/pedigree-for-determining-probability-of-exhibiting-sex-linked-recessive-trait?utm_source=youtube&utm_medium=desc&utm_campaign=highschoolbiology Khan Academy is a nonprofit organization with the mission of providing a free, world-class education for anyone, anywhere. We offer quizzes, questions, instructional videos, and articles on a range of academic subjects, including math, biology, chemistry, physics, history, economics, finance, grammar, preschool learning, and more. We provide teachers with tools and data so they can help their students develop the skills, habits, and mindsets for success in school and beyond. Khan Academy has been translated into dozens of languages, and 15 million people around the globe learn on Khan Academy every month. As a 501(c)(3) nonprofit organization, we would love your help! Donate or volunteer today! Donate here: https://www.khanacademy.org/donate?utm_source=youtube&utm_medium=desc Volunteer here: https://www.khanacademy.org/contribute?utm_source=youtube&utm_medium=desc
Views: 11726 Khan Academy
Example of Solution of the Simple Pedigree Problem
 
06:59
The Punnett square is a diagram that is used to predict an outcome of a particular cross or breeding experiment. It is named after Reginald C. Punnett, who devised the approach. The diagram is used by biologists to determine the probability of an offspring having a particular genotype. The Punnett square is a tabular summary of possible combinations of maternal alleles with paternal alleles.These tables can be used to examine the genotypic outcome probabilities of the offspring of a single trait (allele), or when crossing multiple traits from the parents. The Punnett Square is a visual representation of Mendelian inheritance. It is important to understand the terms "heterozygous", "homozygous", "double heterozygote" (or homozygote), "dominant allele" and "recessive allele" when using the Punnet square method. For multiple traits, using the "forked-line method" is typically much easier than the Punnett square. Phenotypes may be predicted with at least better-than-chance accuracy using a Punnett square, but the phenotype that may appear in the presence of a given genotype can in some instances be influenced by many other factors, as when polygenic inheritance and/or epigenetics are at work.
Heredity: Crash Course Biology #9
 
10:18
Hank and his brother John discuss heredity via the gross example of relative ear wax moistness. Crash Course Biology is now available on DVD! http://dftba.com/product/1av/CrashCourse-Biology-The-Complete-Series-DVD-Set Like CrashCourse on Facebook! http://www.facebook.com/YouTubeCrashCourse Follow CrashCourse on Twitter! http://www.twitter.com/TheCrashCourse This video uses sounds from Freesound.org, a list of which can be found, along with the REFERENCES for this episode, in the Google document here: http://dft.ba/-2dlR tags: crashcourse, science, biology, evolution, genetics, heredity, aristotle, bloodlines, gregor mendel, mendelian genetics, mendelian trait, classical genetics, chromosome, gene, polygenic, pleiotropic, allele, ear wax gene, somatic, diploid, gametes, sperm, egg, haploid, polyploid, dominance, dominant, recessive, heterozygous, homozygous, phenotype, punnett square, reginald c. punnett, sex-linked inheritance, autosome Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 3159960 CrashCourse
Genetics Pedigree Sex linked Recessive Analysis
 
06:42
Using a pedigree for a family with Hemophilia (Sex-Linked Recessive Disorder). Assign notation and determine the genotypes of each person in this pedigree.
autosomal dominant cross
 
00:58
Made with Explain Everything
Views: 555 Dana Newton
How to Interpret Pedigrees for AP Biology
 
02:59
Erika Tan walks through a sample pedigree diagram. *** If there are any pictures used in this video, they are NOT MINE and I will not take credit for them. *** TRANSCRIPT: Pedigrees are used to determine if a trait is dominant, recessive, sex-linked, or autosomal. A lot of these types of questions tend to pop up on the AP exam, too, so they’re important to pay attention to. Here I’ve got a sample pedigree for you. The circles symbolize females and the squares symbolize males. Any shape that’s colored in represents a person that has an attached earlobe. Now, our job is to find out whether the attached earlobe is dominant or recessive, and whether it’s autosomal or sex-linked. By the way, autosomal traits are traits that aren’t located on the sex chromosomes, so they’re any traits that aren’t sex-linked. So, there aren’t any genotypes shown here, just colored and blank shapes. How are we going to solve this? Well, we can see in this section that the parents don’t have an attached earlobe, but one of their children does. Let’s think about it: if the parents were hybrids, we’ll say that they have one dominant earlobe allele and one recessive earlobe allele each. When we solve the Punnett square, we get this. Three of the children have the dominant phenotype like the parents, and one child has the recessive phenotype. Now we know that having an attached earlobe is recessive, because this genotype is the only one with a phenotype other than the parents. So, that phenotype must be this child. And, we know that the child has attached earlobes because his box is colored in. Therefore, attached earlobes are a recessive trait because the child has a recessive genotype. Now let’s try to figure out if this trait is sex-linked or autosomal. In this section of the pedigree, we see that the parents are not affected, but one of their children is. So let’s just ASSUME that this trait IS sex-linked. If that were the case, then the father wouldn’t have an affected X chromosome. So, his genotype would be XY. Now, the mother could either have no affected X chromosomes or one affected X chromosome, since we know it’s a recessive trait and even if she has one affected X chromosome, she won’t express the trait because it’s recessive. Now, let’s take a look at the Punnett squares for this cross. In this Punnett square with the mother having one affected X chromosome, we see that one of the daughters is a carrier, and the other isn’t. In this other Punnett square with the mother having no affected X chromosomes, both possible daughters have no affected X chromosomes either. Well, neither of these match up with the pedigree that we have originally, because in this pedigree, we have one daughter who DOES express the trait, meaning she MUST have two affected X chromosomes since the trait is recessive. Therefore, we know that the trait is not sex-linked, because in these Punnett squares, none of the possible daughters have two affected X chromosomes. And there it is: the trait is autosomal recessive. The key thing to examining pedigrees is to try different combinations like we did with the Punnett squares. Once you can prove if a trait is recessive or not, or sex-linked or not, then you can figure it out from there.
Views: 626 Tangerine Education
GCSE Science Biology (9-1) Inheritance of Sex
 
02:24
Find my revision workbooks here: https://www.freesciencelessons.co.uk/workbooks/shop/ In this video, we look at the inheritance of sex. We find out about sex chromosomes and then look at how these determine the sex of offspring. Image credit: Karyotype By National Cancer Institute - This image was released by the National Cancer Institute, an agency part of the National Institutes of Health, with the ID 2721 (image) (next).This tag does not indicate the copyright status of the attached work. A normal copyright tag is still required. See Commons:Licensing for more information.English | Français | +/−, Public Domain, https://commons.wikimedia.org/w/index.php?curid=24055946 Music credit: Deliberate Thought by Kevin MacLeod is licensed under a Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/) Source: http://incompetech.com/music/royalty-free/?keywords=deliberate+thought Artist: http://incompetech.com/
Views: 58797 Freesciencelessons
Genetics part 5 multiple alleles (dominant and recessive)
 
12:13
For more information, log on to- http://shomusbiology.weebly.com/ Download the study materials here- http://shomusbiology.weebly.com/bio-materials.html An allele (UK /ˈæliːl/ or US /əˈliːl/), or allel, is one of a number of alternative forms of the same gene or same genetic locus (generally a group of genes).[1][2] It is the alternative form of a gene for a character producing different effects. Sometimes, different alleles can result in different observable phenotypic traits, such as different pigmentation. However, many variations at the genetic level result in little or no observable variation. Most multicellular organisms have two sets of chromosomes, that is, they are diploid. These chromosomes are referred to as homologous chromosomes. Diploid organisms have one copy of each gene (and therefore one allele) on each chromosome. If both alleles are the same, they are homozygotes. If the alleles are different, they are heterozygotes. A population or species of organisms typically includes multiple alleles at each locus among various individuals. Allelic variation at a locus is measurable as the number of alleles (polymorphism) present, or the proportion of heterozygotes in the population. For example, at the gene locus for the ABO blood type carbohydrate antigens in humans,[3] classical genetics recognizes three alleles, IA, IB, and IO, that determine compatibility of blood transfusions. Any individual has one of six possible genotypes (AA, AO, BB, BO, AB, and OO) that produce one of four possible phenotypes: "A" (produced by AA homozygous and AO heterozygous genotypes), "B" (produced by BB homozygous and BO heterozygous genotypes), "AB" heterozygotes, and "OO" homozygotes. It is now known that each of the A, B, and O alleles is actually a class of multiple alleles with different DNA sequences that produce proteins with identical properties: more than 70 alleles are known at the ABO locus.[4] An individual with "Type A" blood may be an AO heterozygote, an AA homozygote, or an AA heterozygote with two different "A" alleles. The word "allele" is a short form of allelomorph ("other form"), which was used in the early days of genetics to describe variant forms of a gene detected as different phenotypes. It derives from the Greek prefix ἀλλήλ- ["allel-"], meaning "reciprocal" or "each other", which itself is related to the Greek adjective ἄλλος (allos; cognate with Latin "alius"), meaning "other". Source of the article published in description is Wikipedia. I am sharing their material. Copyright by original content developers of Wikipedia. Link- http://en.wikipedia.org/wiki/Main_Page
Views: 43679 Shomu's Biology