Home
Search results “Data mining example dataset”
The Best Way to Prepare a Dataset Easily
 
07:42
In this video, I go over the 3 steps you need to prepare a dataset to be fed into a machine learning model. (selecting the data, processing it, and transforming it). The example I use is preparing a dataset of brain scans to classify whether or not someone is meditating. The challenge for this video is here: https://github.com/llSourcell/prepare_dataset_challenge Carl's winning code: https://github.com/av80r/coaster_racer_coding_challenge Rohan's runner-up code: https://github.com/rhnvrm/universe-coaster-racer-challenge Come join other Wizards in our Slack channel: http://wizards.herokuapp.com/ Dataset sources I talked about: https://github.com/caesar0301/awesome-public-datasets https://www.kaggle.com/datasets http://reddit.com/r/datasets More learning resources: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-data-science-prepare-data http://machinelearningmastery.com/how-to-prepare-data-for-machine-learning/ https://www.youtube.com/watch?v=kSslGdST2Ms http://freecontent.manning.com/real-world-machine-learning-pre-processing-data-for-modeling/ http://docs.aws.amazon.com/machine-learning/latest/dg/step-1-download-edit-and-upload-data.html http://paginas.fe.up.pt/~ec/files_1112/week_03_Data_Preparation.pdf Please subscribe! And like. And comment. That's what keeps me going. And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w
Views: 145473 Siraj Raval
K-Mean Clustering [Single Dataset]
 
15:01
Data Warehouse and Mining For more: http://www.anuradhabhatia.com
Views: 15609 Anuradha Bhatia
First time Weka Use : How to create & load data set in Weka : Weka Tutorial # 2
 
04:44
This video will show you how to create and load dataset in weka tool. weather data set excel file https://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/weather.xls
Views: 28915 HowTo
Sample Data in R | Sample datasets for data mining | sample data sets for statistical analysis
 
12:02
Sample or in built datasets in R for beginners to quickly learn the tools without worrying much about real time data. In this video I've one through the some of the sample datasets available in R and how you can use it. Sample Data in R | Sample datasets for data mining | sample data sets for statistical analysis
Data Mining Project - Analysis on Boston Housing Dataset
 
05:08
In this video, I explain the analysis on the Boston Housing data set. For this analysis, I have built a decision tree model and checked for the model performance.
Machine learning with Python and sklearn - Hierarchical Clustering (E-commerce dataset example)
 
09:06
In this Machine Learning & Python video tutorial I demonstrate Hierarchical Clustering method. Hierarchical Clustering is a part of Machine Learning and belongs to Clustering family: - Connectivity-based clustering (hierarchical clustering) - Centroid-based clustering (K-Means Clustering) - https://www.youtube.com/watch?v=iybATqk6LNI - Distribution-based clustering - Density-based clustering In data mining and statistics, Hierarchical Clustering also called hierarchical cluster analysis or HCA is a method of cluster analysis which seeks to build a hierarchy of clusters. In this video I demonstrate how Agglomerative Hierarchical Clustering is working. Must know for Hierarchical Clustering is knowing Dendrograms. Dendrogram helps you to decide the optimal number of clusters for your dataset. For executing task in Python I used: - sklearn library that is for Machine Learning algorithms. - ward method that means Minimum Variance Method. If you are interesting more in Hierarchical Clustering, read my article on LinkedIn where I described my experiment about combining Machine Learning (Hierarchical Clustering) in GIS (Geographical Information System). - https://www.linkedin.com/pulse/machine-learning-gis-hierarchical-clustering-urban-bielinskas Data-set for this example is taken from https://www.kaggle.com. There you can find many dataset for very different Machine Learning tasks. Hierarchicaal Clustering is very usable in solving Data Analysis, Data Mining and Statistics problems. If you have any question or comments please write below. Do not forget to subscribe me if want to follow my new videos about Machine Learning, Data Science, Python programming and relative issues. Follow me on LinkedIn: https://www.linkedin.com/in/bielinskas/
Views: 2540 Vytautas Bielinskas
Import Data and Analyze with Python
 
11:58
Python programming language allows sophisticated data analysis and visualization. This tutorial is a basic step-by-step introduction on how to import a text file (CSV), perform simple data analysis, export the results as a text file, and generate a trend. See https://youtu.be/pQv6zMlYJ0A for updated video for Python 3.
Views: 193124 APMonitor.com
Prediction of Student Results #Data Mining
 
08:14
We used WEKA datamining s-w which yields the result in a flash.
Views: 28801 GRIETCSEPROJECTS
Data Mining Project - Analysis on Car Dataset
 
07:00
In this video, I have demonstrated the analysis performed on the car dataset (dataset source: UCI repository) by using SAS Enterprise Miner.
K means clustering algorithm example for the dataset like (1,0),(2,1).... - Part 1
 
05:56
K means clustering algorithm example for the data-set like (1,0),(2,1).... read more at: www.engineeringway.com
Views: 2361 Dharmik Thummar
Train, Test, & Validation Sets explained
 
06:58
In this video, we explain the concept of the different data sets used for training and testing an artificial neural network, including the training set, testing set, and validation set. We also show how to create and specify these data sets in code with Keras. Check out the corresponding blog and other resources for this video at: http://deeplizard.com/learn/video/Zi-0rlM4RDs Follow deeplizard on Twitter: https://twitter.com/deeplizard Follow deeplizard on Steemit: https://steemit.com/@deeplizard Become a patron: https://www.patreon.com/deeplizard Support deeplizard: Bitcoin: 1AFgm3fLTiG5pNPgnfkKdsktgxLCMYpxCN Litecoin: LTZ2AUGpDmFm85y89PFFvVR5QmfX6Rfzg3 Ether: 0x9105cd0ecbc921ad19f6d5f9dd249735da8269ef Recommended books: The Most Human Human: What Artificial Intelligence Teaches Us About Being Alive: http://amzn.to/2GtjKqu
Views: 17719 deeplizard
Getting started in scikit-learn with the famous iris dataset
 
15:26
Now that we've set up Python for machine learning, let's get started by loading an example dataset into scikit-learn! We'll explore the famous "iris" dataset, learn some important machine learning terminology, and discuss the four key requirements for working with data in scikit-learn. Download the notebook: https://github.com/justmarkham/scikit-learn-videos Iris dataset: http://archive.ics.uci.edu/ml/datasets/Iris scikit-learn dataset loading utilities: http://scikit-learn.org/stable/datasets/ Fast Numerical Computing with NumPy (slides): https://speakerdeck.com/jakevdp/losing-your-loops-fast-numerical-computing-with-numpy-pycon-2015 Fast Numerical Computing with NumPy (video): https://www.youtube.com/watch?v=EEUXKG97YRw Introduction to NumPy (PDF): http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf WANT TO GET BETTER AT MACHINE LEARNING? HERE ARE YOUR NEXT STEPS: 1) WATCH my scikit-learn video series: https://www.youtube.com/playlist?list=PL5-da3qGB5ICeMbQuqbbCOQWcS6OYBr5A 2) SUBSCRIBE for more videos: https://www.youtube.com/dataschool?sub_confirmation=1 3) JOIN "Data School Insiders" to access bonus content: https://www.patreon.com/dataschool 4) ENROLL in my Machine Learning course: https://www.dataschool.io/learn/ 5) LET'S CONNECT! - Newsletter: https://www.dataschool.io/subscribe/ - Twitter: https://twitter.com/justmarkham - Facebook: https://www.facebook.com/DataScienceSchool/ - LinkedIn: https://www.linkedin.com/in/justmarkham/
Views: 135905 Data School
Data Mining with Weka (2.2: Training and testing)
 
05:42
Data Mining with Weka: online course from the University of Waikato Class 2 - Lesson 2: Training and testing http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/D3ZVf8 https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 68986 WekaMOOC
Weka Tutorial 35: Creating Training, Validation and Test Sets (Data Preprocessing)
 
10:10
The tutorial that demonstrates how to create training, test and cross validation sets from a given dataset.
Views: 71919 Rushdi Shams
Data Cleaning In Python (Practical Examples)
 
17:40
Data Cleaning In Python with Pandas In this tutorial we will see some practical issues we have when working with data,how to diagnose them and how to solve them. ==Tutorial and Data Set here== Github: https://goo.gl/erg89C Blog: https://goo.gl/6PJsdo Reference ====Common Data Cleaning Issues==== Reading File Inconsistent Column Names Missing Data Duplicates Inconsistent Data Types Outliers Noisy Data etc.
Views: 6806 J-Secur1ty
Data Mining with Weka (1.3: Exploring datasets)
 
10:38
Data Mining with Weka: online course from the University of Waikato Class 1 - Lesson 3: Exploring datasets http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/IGzlrn https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 75695 WekaMOOC
Lecture 75 — Information Gain | Mining of Massive Datasets | Stanford University
 
09:51
. Copyright Disclaimer Under Section 107 of the Copyright Act 1976, allowance is made for "FAIR USE" for purposes such as criticism, comment, news reporting, teaching, scholarship, and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational or personal use tips the balance in favor of fair use. .
Data Mining Lecture - - Finding frequent item sets | Apriori Algorithm | Solved Example (Eng-Hindi)
 
13:19
In this video Apriori algorithm is explained in easy way in data mining Thank you for watching share with your friends Follow on : Facebook : https://www.facebook.com/wellacademy/ Instagram : https://instagram.com/well_academy Twitter : https://twitter.com/well_academy data mining in hindi, Finding frequent item sets, data mining, data mining algorithms in hindi, data mining lecture, data mining tools, data mining tutorial,
Views: 154109 Well Academy
Types of Data: Nominal, Ordinal, Interval/Ratio - Statistics Help
 
06:20
The kind of graph and analysis we can do with specific data is related to the type of data it is. In this video we explain the different levels of data, with examples. Subtitles in English and Spanish.
Views: 786541 Dr Nic's Maths and Stats
Cleaning Data In Python Using Pandas In Data Mining Example, Statistics With Python For Data Science
 
17:32
In this Data Mining Example Tutorial, we learn how to clean our data set using Python and Pandas. We clean Billboard data set by headly. we perform several python data cleaning operations on our Data set which is csv file. This will be the best pandas tutorial in data science you will have ever watched. 🔷🔷🔷🔷🔷🔷🔷 Jupyter NOtebooks and Data Sets for Practice: https://github.com/theengineeringworld/statistics-using-python 🔷🔷🔷🔷🔷🔷🔷 Data Cleaning Steps and Methods, How to Clean Data for Analysis With Pandas In Python [Example] 🐼 https://youtu.be/GMxCL0PBHzA Data Wrangling With Python Using Pandas, Data Science For Beginners, Statistics Using Python 🐍🐼 https://youtu.be/tqv3sL67sC8 Cleaning Data In Python For Statistical Analysis Using Pandas, Big Data & Data Science For Beginners https://youtu.be/4own4ojgbnQ Exploratory Data Analysis In Python, Interactive Data Visualization [Course] With Python and Pandas https://youtu.be/VdWfB30QTYI 🔷🔷🔷🔷🔷🔷🔷 *** Complete Python Programming Playlists *** * Python Data Science https://www.youtube.com/watch?v=Uct_EbThV1E&list=PLZ7s-Z1aAtmIbaEj_PtUqkqdmI1k7libK * NumPy Data Science Essential Training with Python 3 https://www.youtube.com/playlist?list=PLZ7s-Z1aAtmIRpnGQGMTvV3AGdDK37d2b * Python 3.6.4 Tutorial can be fund here: https://www.youtube.com/watch?v=D0FrzbmWoys&list=PLZ7s-Z1aAtmKVb0fpKyINNeSbFSNkLTjQ * Python Smart Programming in Jupyter Notebook: https://www.youtube.com/watch?v=FkJI8np1gV8&list=PLZ7s-Z1aAtmIVV0dp08_X-yDGrIlTExd2 * Python Coding Interview: https://www.youtube.com/watch?v=wwtzs7vTG50&list=PLZ7s-Z1aAtmJqtN1A3ydeMk0JoD3Lvt9g
Views: 494 TheEngineeringWorld
K mean clustering algorithm with solve example
 
12:13
Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://goo.gl/to1yMH or Fill the form we will contact you https://goo.gl/forms/2SO5NAhqFnjOiWvi2 if you have any query email us at [email protected] or [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 260783 Last moment tuitions
Decision Tree with Solved Example in English | DWM | ML | BDA
 
21:21
Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://goo.gl/to1yMH or Fill the form we will contact you https://goo.gl/forms/2SO5NAhqFnjOiWvi2 if you have any query email us at [email protected] or [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 151248 Last moment tuitions
Data Mining Lecture -- Decision Tree | Solved Example (Eng-Hindi)
 
29:13
-~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 145180 Well Academy
Introduction to Entropy for Data Science
 
09:01
We take a look at the concepts and formulas for entropy as applied to problems in data science.
Views: 42369 mfschulte222
Data Mining using R | Data Mining Tutorial for Beginners | R Tutorial for Beginners | Edureka
 
36:36
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R tutorial on "Data Mining using R" will help you understand the core concepts of Data Mining comprehensively. This tutorial will also comprise of a case study using R, where you'll apply data mining operations on a real life data-set and extract information from it. Following are the topics which will be covered in the session: 1. Why Data Mining? 2. What is Data Mining 3. Knowledge Discovery in Database 4. Data Mining Tasks 5. Programming Languages for Data Mining 6. Case study using R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies Please write back to us at [email protected] or call us at +918880862004 or 18002759730 for more information. Website: https://www.edureka.co/data-science Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. " Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 50466 edureka!
Technical Course: Decision Trees: Decision Tree Analysis
 
08:53
Decision Tree Tutorial and Introduction by Jigsaw Academy. This is part one of the Decision Tree tutorial from our Foundation Analytics course (http://www.jigsawacademy.com/online-analytics-training). In this example, we look at how decision trees can be used by credit card companies to market themselves to a target audience of potentially profitable customers. Jigsaw Academy is an award winning premier online analytics training institute that aims to meet the growing demand for talent in the field of analytics by providing industry-relevant training to develop business-ready professionals.Jigsaw Academy has been acknowledged by blue chip companies for quality training. Follow us on: https://www.facebook.com/jigsawacademy https://twitter.com/jigsawacademy http://jigsawacademy.com/
Views: 80462 Jigsaw Academy
What Are The Types Of Dataset
 
03:24
Get The Answer For What Are The Types Of Dataset.?The Complete Video Series Of ADO.NET With Examples at... https://www.pluralsight.com/courses/adodotnet-by-example -~-~~-~~~-~~-~- Please watch: "How to Enable and Disable Connection Pooling" → https://www.youtube.com/watch?v=19OrWbwzysM -~-~~-~~~-~~-~-
Views: 1466 sekhar srinivas
Partitioning data into training and validation datasets using R
 
11:02
Link to download data file: https://drive.google.com/open?id=0B5W8CO0Gb2GGUVNyZ1JqMW1NZjA Includes example of data partition or data splitting with R. - Shows steps for reading CSV file into R. - Illustrates developing linear regression model using training data and then making predictions using validation data set in r. - Discusses regression coefficients - Provides application example using an automobile warranty claims dataset R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 25891 Bharatendra Rai
Develop a Data Science Project | Solving a Data Science Problem | Data Science Tutorial | Edureka
 
54:35
( Data Science Training - https://www.edureka.co/data-science ) Watch sample class recording: http://www.edureka.co/data-science?utm_source=youtube&utm_medium=referral&utm_campaign=develop-datascience-project Data science is the study of the generalizable extraction of knowledge from data, yet the key word is science. Data Science is one of the most-sought after professions today. Universities across the world are offering courses in this discipline which stands testimony to this emerging profession. There are a very few professionals with the required skill and the demand for data scientists is racing ahead. The tutorial wil give a brief understanding about Data Science. The topics covered in the video: 1.Problem Statement 2.Variable Desriptions 3.Data EXploration 4.Data Cleaning and Preparation 5.Reading from Other Sources 6.Titanic Data Sets 7.Decision Trees and Random Forests 8.Build a Decision Tree 9.Build a Random Forest 10.Linear Regression 11.Logistic Regression 12.Machine Learning 13.Data Mining 14.Machine Learning and Data Mining Resources 15.Solving a Data Science Problem using R, Hadoop, Mahout Related Posts: http://www.edureka.co/blog/who-can-take-up-a-data-science-tutorial/?utm_source=youtube&utm_medium=referral&utm_campaign=develop-datascience-project http://www.edureka.co/blog/enroll-for-a-data-science-course/?utm_source=youtube&utm_medium=referral&utm_campaign=develop-datascience-project http://www.edureka.co/blog/types-of-data-scientists/?utm_source=youtube&utm_medium=referral&utm_campaign=develop-datascience-project http://www.edureka.co/blog/core-data-scientist-skills/?utm_source=youtube&utm_medium=referral&utm_campaign=develop-datascience-project Edureka is a New Age e-learning platform that provides Instructor-Led Live, Online classes for learners who would prefer a hassle free and self paced learning environment, accessible from any part of the world. ‘Develop a Data Science Project’ have been widely covered in our course ‘Data Science’. For more information, please write back to us at [email protected] Call us at US: 1800 275 9730 (toll free) or India: +91-8880862004
Views: 26548 edureka!
Natalie Hockham: Machine learning with imbalanced data sets
 
27:45
Classification algorithms tend to perform poorly when data is skewed towards one class, as is often the case when tackling real-world problems such as fraud detection or medical diagnosis. A range of methods exist for addressing this problem, including re-sampling, one-class learning and cost-sensitive learning. This talk looks at these different approaches in the context of fraud detection. Full details — http://london.pydata.org/schedule/presentation/40/
Views: 16046 PyData
Weka Data Mining Tutorial for First Time & Beginner Users
 
23:09
23-minute beginner-friendly introduction to data mining with WEKA. Examples of algorithms to get you started with WEKA: logistic regression, decision tree, neural network and support vector machine. Update 7/20/2018: I put data files in .ARFF here http://pastebin.com/Ea55rc3j and in .CSV here http://pastebin.com/4sG90tTu Sorry uploading the data file took so long...it was on an old laptop.
Views: 430196 Brandon Weinberg
Lecture 58 — Overview of Clustering | Mining of Massive Datasets | Stanford University
 
08:47
. Copyright Disclaimer Under Section 107 of the Copyright Act 1976, allowance is made for "FAIR USE" for purposes such as criticism, comment, news reporting, teaching, scholarship, and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational or personal use tips the balance in favor of fair use. .
Judging outliers in a dataset | Summarizing quantitative data | AP Statistics | Khan Academy
 
08:21
Using the inter-quartile range (IQR) to judge outliers in a dataset. View more lessons or practice this subject at http://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/stats-box-whisker-plots/v/judging-outliers-in-a-dataset?utm_source=youtube&utm_medium=desc&utm_campaign=apstatistics AP Statistics on Khan Academy: Meet one of our writers for AP¨_ Statistics, Jeff. A former high school teacher for 10 years in Kalamazoo, Michigan, Jeff taught Algebra 1, Geometry, Algebra 2, Introductory Statistics, and AP¨_ Statistics. Today he's hard at work creating new exercises and articles for AP¨_ Statistics. Khan Academy is a nonprofit organization with the mission of providing a free, world-class education for anyone, anywhere. We offer quizzes, questions, instructional videos, and articles on a range of academic subjects, including math, biology, chemistry, physics, history, economics, finance, grammar, preschool learning, and more. We provide teachers with tools and data so they can help their students develop the skills, habits, and mindsets for success in school and beyond. Khan Academy has been translated into dozens of languages, and 15 million people around the globe learn on Khan Academy every month. As a 501(c)(3) nonprofit organization, we would love your help! Donate or volunteer today! Donate here: https://www.khanacademy.org/donate?utm_source=youtube&utm_medium=desc Volunteer here: https://www.khanacademy.org/contribute?utm_source=youtube&utm_medium=desc
Views: 62229 Khan Academy
Data Mining - Clustering
 
06:52
What is clustering Partitioning a data into subclasses. Grouping similar objects. Partitioning the data based on similarity. Eg:Library. Clustering Types Partitioning Method Hierarchical Method Agglomerative Method Divisive Method Density Based Method Model based Method Constraint based Method These are clustering Methods or types. Clustering Algorithms,Clustering Applications and Examples are also Explained.
Data Analysis:  Clustering and Classification (Lec. 1, part 1)
 
26:59
Supervised and unsupervised learning algorithms
Views: 59151 Nathan Kutz
R operations   Data Cleaning,Error Correction and Data Transformation on airquality dataset
 
16:27
THIS VIDEO SHOWS R OPERATIONS LIKE DATA CLEANING,ERROR CORECTION AND DATA TRANSFORMATION ON AIR QUALITY DATASET
Views: 5858 yogesh murumkar
Predicting Stock Prices - Learn Python for Data Science #4
 
07:39
In this video, we build an Apple Stock Prediction script in 40 lines of Python using the scikit-learn library and plot the graph using the matplotlib library. The challenge for this video is here: https://github.com/llSourcell/predicting_stock_prices Victor's winning recommender code: https://github.com/ciurana2016/recommender_system_py Kevin's runner-up code: https://github.com/Krewn/learner/blob/master/FieldPredictor.py#L62 I created a Slack channel for us, sign up here: https://wizards.herokuapp.com/ Stock prediction with Tensorflow: https://nicholastsmith.wordpress.com/2016/04/20/stock-market-prediction-using-multi-layer-perceptrons-with-tensorflow/ Another great stock prediction tutorial: http://eugenezhulenev.com/blog/2014/11/14/stock-price-prediction-with-big-data-and-machine-learning/ This guy made 500K doing ML stuff with stocks: http://jspauld.com/post/35126549635/how-i-made-500k-with-machine-learning-and-hft Please share this video, like, comment and subscribe! That's what keeps me going. and please support me on Patreon!: https://www.patreon.com/user?u=3191693 Check out this youtube channel for some more cool Python tutorials: https://www.youtube.com/watch?v=RZF17FfRIIo Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w
Views: 486817 Siraj Raval
Support Vector Machine (SVM) - Fun and Easy Machine Learning
 
07:28
Support Vector Machine (SVM) - Fun and Easy Machine Learning https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes new examples. To understand SVM’s a bit better, Lets first take a look at why they are called support vector machines. So say we got some sample data over here of features that classify whether a observed picture is a dog or a cat, so we can for example look at snout length or and ear geometry if we assume that dogs generally have longer snouts and cat have much more pointy ear shapes. So how do we decide where to draw our decision boundary? Well we can draw it over here or here or like this. Any of these would be fine, but what would be the best? If we do not have the optimal decision boundary we could incorrectly mis-classify a dog with a cat. So if we draw an arbitrary separation line and we use intuition to draw it somewhere between this data point for the dog class and this data point of the cat class. These points are known as support Vectors – Which are defined as data points that the margin pushes up against or points that are closest to the opposing class. So the algorithm basically implies that only support vector are important whereas other training examples are ‘ignorable’. An example of this is so that if you have our case of a dog that looks like a cat or cat that is groomed like a dog, we want our classifier to look at these extremes and set our margins based on these support vectors. ----------- www.ArduinoStartups.com ----------- To learn more on Augmented Reality, IoT, Machine Learning FPGAs, Arduinos, PCB Design and Image Processing then Check out http://www.arduinostartups.com/ Please like and Subscribe for more videos :)
Views: 109947 Augmented Startups
Introduction to Data Analysis and Mining: what is it?
 
09:46
Here I give an introduction to the course of data exploration (data analysis) and data mining. I also show an example dataset My web page: www.imperial.ac.uk/people/n.sadawi
Views: 65464 Noureddin Sadawi
Weka Tutorial 02: Data Preprocessing 101 (Data Preprocessing)
 
10:42
This tutorial demonstrates various preprocessing options in Weka. However, details about data preprocessing will be covered in the upcoming tutorials.
Views: 157836 Rushdi Shams
Import Data and Analyze with MATLAB
 
09:19
Data are frequently available in text file format. This tutorial reviews how to import data, create trends and custom calculations, and then export the data in text file format from MATLAB. Source code is available from http://apmonitor.com/che263/uploads/Main/matlab_data_analysis.zip
Views: 345667 APMonitor.com
Association Rule Mining in R
 
13:30
This video is using Titanic data file that's embedded in R (see here: https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/Titanic.html). You can find both the data and the code here: https://github.com/A01203249/YouTube-Videos.git. Use git clone to clone this repo locally and use the code.
Views: 46124 Ani Aghababyan
New Python Tutorial: Diagnose data for cleaning
 
03:57
First video of our latest course by Daniel Chen: Cleaning Data in Python. Like and comment if you enjoyed the video! A vital component of data science involves acquiring raw data and getting it into a form ready for analysis. In fact, it is commonly said that data scientists spend 80% of their time cleaning and manipulating data, and only 20% of their time actually analyzing it. This course will equip you with all the skills you need to clean your data in Python, from learning how to diagnose your data for problems to dealing with missing values and outliers. At the end of the course, you'll apply all of the techniques you've learned to a case study in which you'll clean a real-world Gapminder dataset! So you've just got a brand new dataset and are itching to start exploring it. But where do you begin, and how can you be sure your dataset is clean? This chapter will introduce you to the world of data cleaning in Python! You'll learn how to explore your data with an eye for diagnosing issues such as outliers, missing values, and duplicate rows. Try the first chapter for free: https://www.datacamp.com/courses/cleaning-data-in-python
Views: 11864 DataCamp
Introduction to Data Science with R - Data Analysis Part 1
 
01:21:50
Part 1 in a in-depth hands-on tutorial introducing the viewer to Data Science with R programming. The video provides end-to-end data science training, including data exploration, data wrangling, data analysis, data visualization, feature engineering, and machine learning. All source code from videos are available from GitHub. NOTE - The data for the competition has changed since this video series was started. You can find the applicable .CSVs in the GitHub repo. Blog: http://daveondata.com GitHub: https://github.com/EasyD/IntroToDataScience I do Data Science training as a Bootcamp: https://goo.gl/OhIHSc
Views: 860401 David Langer
Intrusion Detection based on KDD Cup Dataset
 
18:41
Final Presentation for Big Data Analysis
Views: 7253 Qiankun Zhuang

Sample cover letter executive director position summary
What is a cover letter supposed to say
Paralegal cover letter tips
How to start a cover letter when you don't know the recipient
Buffalo state admissions essay for college